
MULTI-TAPE TURING MACHINES: 

INFORMAL DESCRIPTION 

Control 

… a1 a2  Tape1 

head1 

… a1 a2  Tape2 

head2 

… 

We add a finite 

number of tapes 



MULTI-TAPE TURING MACHINES: 

INFORMAL DESCRIPTION (II) 

•Each tape is bounded to the left by a cell containing the 

symbol  

 

•Each tape has a unique header 

 

•Transitions have the form (for a 2-tape Turing machine): 

 

 ( (p,(x1, x2)), (q, (y1, y2)) ) 

Such that each xi is in  and each yi is in  or is  or . 

and if xi =  then yi =  or yi =  



MULTI-TAPE TURING MACHINES 

Construct a 2-tape Turing machine that recognizes the language: 

 

                     L = {anbn : n = 0, 1, 2, …} 

Hints:  

•use the second tape as an stack 

•Use the machines M1 and M0 

Tape1: w 

Input: 

Tape2:  

Tape1: 1…   if w  L 

           or 

Tape1: 0…   if w  L 

Output: 



MULTI-TAPE TURING MACHINES VS TURING 

MACHINES 

a1 a2  
… ai 

b1 b2  
… bj 

… 

… 

We can simulate a 2-tape Turing machine M2 in a Turing 

machine M: 

• we can represent the contents of the 2 tapes in the single tape by 

using special symbols 

 

•We can simulate one transition from the M2 by constructing 

multiple transitions on M 

 

•We introduce several (finite) new states into M 

M2 



a b  

b b  

Tape1 a b 

a 
Tape2 

State: s 

Configuration in a 2-tape Turing Machine M2: 

USING STATES TO “REMEMBER” INFORMATION 

State in the Turing machine M: “s+b+1+a+2” 

Which represents: 

•M2 is in state s 

•Cell pointed by first header in M2 contains b 

•Cell pointed by second header in M2 contains an a 



USING STATES TO “REMEMBER” INFORMATION 

(2) 

State in the Turing machine M: “s+b+1+a+2” 

How many states are there in M? 

(# states in M2) * | or  or | * | or  or |  

Yes, we need large number of states for M but it is finite! 



a b  

b b  

Tape1 a b 

a 
Tape2 

State in M2: s 

Configuration in a 2-tape Turing Machine M2: 

Equivalent configuration in a Turing Machine M: 

State in M: s+b+1+a+2 

a b 1 a b  2     
 4  b b a 3   e  



SIMULATING M2 WITH M 

•The alphabet  of the Turing machine M extends the alphabet 

2 from the M2 by adding the separator symbols: 1, 2, 3 , 4 

and e, and adding the mark symbols:  and  

•We introduce more states for M, one for each 5-tuple 

p++1+ +2 where p in an state in M2 and +1+ +2 

indicates that the head of the first tape points to  and the 

second one to  

 

•We also need states of the form p++1++2 for control 

purposes 



SIMULATING TRANSITIONS IN M2 WITH 

M 

•At the beginning of each iteration of M2, the head starts at e and 

both M and M2 are in an state s 

•We traverse the whole tape do determine the state p++1+ +2, 
Thus,  the transition in M2 that is applicable must have the form: 

                    

 ( (p,(, )), (q,(,)) ) in M2 

State in M: s+b+1+a+2 

a b 1 a b  2     
 4  b b a 3   e  

p+ +1+ +2 q+ +1++2 in M 



SIMULATING TRANSITIONS IN M2 WITH M 

(2) 

•To apply the transformation (q,(,)), we go forwards from the 

first cell. 

 

•If the  (or ) is   (or ) we move the marker to the right 

(left):  

                    

 1  
…  

i 

 
1  

…  

i 

 

•If the  (or ) is a character,  we first determine the correct 

position and then overwrite 



a b  a b  2     
 4  b b a 3   e 1 

a b  a b  2     
 4  b b a 3   e 1 

a b  a b 1 2     
 4  b b a 3   e  

 b  a b 1 2 
a    

 4  b b a 3   e  

   a b 1 2 a b   
 4  b b a 3   e  

a b  a b  2     
 4  b b a 3   e 

Output: 

1 

state: s 

state: s+b+1 



MULTI-TAPE TURING MACHINES VS 

TURING MACHINES (6) 

•We conclude that 2-tape Turing machines can be simulated by 

Turing machines. Thus, they don’t add computational power! 

 

•Using a similar construction we can show that 3-tape Turing 

machines can be simulated by 2-tape Turing machines (and 

thus, by Turing machines). 

 

•Thus, k-tape Turing machines can be simulated by Turing 

machines 



IMPLICATIONS 

•If we show that a function can be computed by a k-tape 

Turing machine, then the function is Turing-computable 

 

•In particular, if a language can be decided by a k-tape 

Turing machine, then the language is decidable 

Example: Since we constructed a 2-tape TM that decides 

L = {anbn : n = 0, 1, 2, …}, then L is Turing-computable. 



IMPLICATIONS (2) 

Example: Show that if L1 and L2 are decidable then 

L1  L2 is also decidable 

Proof.  … 



HOMEWORK 

1. Prove that (ab)* is Turing-enumerable (Hint: use a 2-tape Turing 

machine.) 

 

2. Exercise 4.24 a) and b) (Hint: use a 3-tape Turing machine.) 

 

3. For proving that * is Turing-enumerable, we needed to construct a 

Turing machine that computes the successor of a word. Here are 

some examples of what the machine will produce (w  w’ indicates 

that when the machine receives w as input, it produces w’ as output)   

  a  b  aa  ab  ba  bb  aaa  

 

 


