
MULTI-TAPE TURING MACHINES:

INFORMAL DESCRIPTION

Control

… a1 a2 Tape1

head1

… a1 a2 Tape2

head2

…

We add a finite

number of tapes

MULTI-TAPE TURING MACHINES:

INFORMAL DESCRIPTION (II)

•Each tape is bounded to the left by a cell containing the

symbol

•Each tape has a unique header

•Transitions have the form (for a 2-tape Turing machine):

 ((p,(x1, x2)), (q, (y1, y2)))

Such that each xi is in and each yi is in or is or .

and if xi = then yi = or yi =

MULTI-TAPE TURING MACHINES

Construct a 2-tape Turing machine that recognizes the language:

 L = {anbn : n = 0, 1, 2, …}

Hints:

•use the second tape as an stack

•Use the machines M1 and M0

Tape1: w

Input:

Tape2:

Tape1: 1… if w L

 or

Tape1: 0… if w L

Output:

MULTI-TAPE TURING MACHINES VS TURING

MACHINES

a1 a2
… ai

b1 b2
… bj

…

…

We can simulate a 2-tape Turing machine M2 in a Turing

machine M:

• we can represent the contents of the 2 tapes in the single tape by

using special symbols

•We can simulate one transition from the M2 by constructing

multiple transitions on M

•We introduce several (finite) new states into M

M2

a b

b b

Tape1 a b

a
Tape2

State: s

Configuration in a 2-tape Turing Machine M2:

USING STATES TO “REMEMBER” INFORMATION

State in the Turing machine M: “s+b+1+a+2”

Which represents:

•M2 is in state s

•Cell pointed by first header in M2 contains b

•Cell pointed by second header in M2 contains an a

USING STATES TO “REMEMBER” INFORMATION

(2)

State in the Turing machine M: “s+b+1+a+2”

How many states are there in M?

(# states in M2) * | or or | * | or or |

Yes, we need large number of states for M but it is finite!

a b

b b

Tape1 a b

a
Tape2

State in M2: s

Configuration in a 2-tape Turing Machine M2:

Equivalent configuration in a Turing Machine M:

State in M: s+b+1+a+2

a b 1 a b 2
 4 b b a 3 e

SIMULATING M2 WITH M

•The alphabet of the Turing machine M extends the alphabet

2 from the M2 by adding the separator symbols: 1, 2, 3 , 4

and e, and adding the mark symbols: and

•We introduce more states for M, one for each 5-tuple

p++1+ +2 where p in an state in M2 and +1+ +2

indicates that the head of the first tape points to and the

second one to

•We also need states of the form p++1++2 for control

purposes

SIMULATING TRANSITIONS IN M2 WITH

M

•At the beginning of each iteration of M2, the head starts at e and

both M and M2 are in an state s

•We traverse the whole tape do determine the state p++1+ +2,
Thus, the transition in M2 that is applicable must have the form:

 ((p,(,)), (q,(,))) in M2

State in M: s+b+1+a+2

a b 1 a b 2
 4 b b a 3 e

p+ +1+ +2 q+ +1++2 in M

SIMULATING TRANSITIONS IN M2 WITH M

(2)

•To apply the transformation (q,(,)), we go forwards from the

first cell.

•If the (or) is (or) we move the marker to the right

(left):

 1
…

i

1

…

i

•If the (or) is a character, we first determine the correct

position and then overwrite

a b a b 2
 4 b b a 3 e 1

a b a b 2
 4 b b a 3 e 1

a b a b 1 2
 4 b b a 3 e

 b a b 1 2
a

 4 b b a 3 e

 a b 1 2 a b
 4 b b a 3 e

a b a b 2
 4 b b a 3 e

Output:

1

state: s

state: s+b+1

MULTI-TAPE TURING MACHINES VS

TURING MACHINES (6)

•We conclude that 2-tape Turing machines can be simulated by

Turing machines. Thus, they don’t add computational power!

•Using a similar construction we can show that 3-tape Turing

machines can be simulated by 2-tape Turing machines (and

thus, by Turing machines).

•Thus, k-tape Turing machines can be simulated by Turing

machines

IMPLICATIONS

•If we show that a function can be computed by a k-tape

Turing machine, then the function is Turing-computable

•In particular, if a language can be decided by a k-tape

Turing machine, then the language is decidable

Example: Since we constructed a 2-tape TM that decides

L = {anbn : n = 0, 1, 2, …}, then L is Turing-computable.

IMPLICATIONS (2)

Example: Show that if L1 and L2 are decidable then

L1 L2 is also decidable

Proof. …

HOMEWORK

1. Prove that (ab)* is Turing-enumerable (Hint: use a 2-tape Turing

machine.)

2. Exercise 4.24 a) and b) (Hint: use a 3-tape Turing machine.)

3. For proving that * is Turing-enumerable, we needed to construct a

Turing machine that computes the successor of a word. Here are

some examples of what the machine will produce (w w’ indicates

that when the machine receives w as input, it produces w’ as output)

 a b aa ab ba bb aaa

