Multi-tape Turing Machines: Informal Description

We add a finite number of tapes

Multi-tape Turing Machines: Informal Description (II)

-Each tape is bounded to the left by a cell containing the symbol Δ

- Each tape has a unique header
-Transitions have the form (for a 2-tape Turing machine):

$$
\left(\left(\mathrm{p},\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)\right),\left(\mathrm{q},\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)\right)
$$

Such that each x_{i} is in \sum and each y_{i} is in \sum or is \rightarrow or \leftarrow and if $\mathrm{x}_{\mathrm{i}}=\Delta$ then $\mathrm{y}_{\mathrm{i}}=\rightarrow$ or $\mathrm{y}_{\mathrm{i}}=\Delta$

Multi-tape Turing Machines

Construct a 2-tape Turing machine that recognizes the language:

$$
\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{~b}^{\mathrm{n}}: \mathrm{n}=0,1,2, \ldots\right\}
$$

Hints:

-use the second tape as an stack
-Use the machines M1 and M0

Input:
Tape1: $\underline{\Delta}$ w
Tape2: $\underline{\Delta}$
Output:
Tape 1: $\Delta 1 \ldots$ if $\mathrm{w} \in \mathrm{L}$
Or
Tape 1: $\Delta 0 \ldots$ if $\mathrm{w} \notin \mathrm{L}$

Multi-tape Turing Machines vs Turing Machines

We can simulate a 2-tape Turing machine M2 in a Turing machine M:

- we can represent the contents of the 2 tapes in the single tape by using special symbols
-We can simulate one transition from the M2 by constructing multiple transitions on M
-We introduce several (finite) new states into M

Using States to "Remember" Information

Configuration in a 2-tape Turing Machine M2:

State in the Turing machine M: " $\mathrm{s}+\mathrm{b}+1+\mathrm{a}+2$ "
Which represents:

- M2 is in state s
-Cell pointed by first header in M2 contains b
-Cell pointed by second header in M2 contains an a

Using States to "Remember" Information (2)

State in the Turing machine M: " $s+b+1+a+2$ "

How many states are there in M?
(\# states in M2) $* \mid \Sigma$ or \rightarrow or $\leftarrow|*| \Sigma$ or \rightarrow or $\leftarrow \mid$

Yes, we need large number of states for M but it is finite!

Configuration in a 2-tape Turing Machine M2:

State in M2: s

Equivalent configuration in a Turing Machine M:

> State in M: s+b+1+a+2

Simulating M2 with M

-The alphabet Σ of the Turing machine M extends the alphabet Σ_{2} from the M_{2} by adding the separator symbols: $\Delta_{1}, \Delta_{2}, \Delta_{3}, \Delta_{4}$ and Δ_{e}, and adding the mark symbols: $\sqrt{ }$ and \times
-We introduce more states for M , one for each 5-tuple $\mathrm{p}+\alpha+1+\beta+2$ where p in an state in M_{2} and $\alpha+1+\beta+2$ indicates that the head of the first tape points to α and the second one to β
-We also need states of the form $\mathrm{p}+\leftarrow+1+\rightarrow+2$ for control purposes

Simulating transitions in M2 with

State in M: $s+b+1+a+2$

- At the beginning of each iteration of M2, the head starts at Δ_{e} and both M and M 2 are in an state s
-We traverse the whole tape do determine the state $p+\alpha+1+\beta+2$, Thus, the transition in M2 that is applicable must have the form:

$$
\begin{gathered}
((\mathrm{p},(\alpha, \beta)),(\mathrm{q},(\gamma, \psi))) \text { in } \mathrm{M}_{2} \\
\mathrm{p}+\alpha+1+\beta+2
\end{gathered}
$$

Simulating transitions in M2 with M (2)

-To apply the transformation ($\mathrm{q},(\gamma, \psi)$), we go forwards from the first cell.
-If the $\gamma($ or $\psi)$ is \rightarrow (or \leftarrow) we move the marker to the right (left):

-If the $\gamma($ or $\psi)$ is a character, we first determine the correct position and then overwrite
state: s

Δ	Δ_{1}	a	b	a	b	Δ_{2}	\times	x	$\sqrt{ }$	x	x	Δ_{3}	b	b	a	Δ_{4}	x	\times	x	$\sqrt{ }$	Δ_{e}

Δ	Δ_{1}	a	b	a	b	Δ_{2}	x	x	$\sqrt{ }$	x	x	Δ_{3}	b	b	a	Δ_{4}	\times	\times	\times	$\sqrt{ }$

Δ	\times	a	b	a	b	Δ_{2}	Δ_{1}	\times	$\sqrt{ }$	\times	x	Δ_{3}	b	b	a	Δ_{4}	\times	x	x	$\sqrt{ }$

Δ	\times	\times	b	a	b	Δ_{2}	Δ_{1}	a	$\sqrt{ }$	\times	x	Δ_{3}	b	b	a	Δ_{4}	x	\times	x	$\sqrt{ }$	Δ_{e}

Δ	\times	\times	$\sqrt{2}$	a	b	Δ_{2}	Δ	Δ	a	b	x	x	Δ_{3}	b	b	a	Δ_{4}	x	x	x	$\sqrt{ }$

Output: \downarrow state: $s+b+1$

Δ	Δ_{1}	a	b	a	b	Δ_{2}	\times	\times	$\sqrt{ }$	\times	\times	Δ_{3}	b	b	a	Δ_{4}	\times	\times	\times	$\sqrt{ }$

Multi-tape Turing Machines vs Turing Machines (6)

-We conclude that 2-tape Turing machines can be simulated by Turing machines. Thus, they don't add computational power!
-Using a similar construction we can show that 3-tape Turing machines can be simulated by 2-tape Turing machines (and thus, by Turing machines).
-Thus, k-tape Turing machines can be simulated by Turing machines

IMPLICATIONS

-If we show that a function can be computed by a k-tape Turing machine, then the function is Turing-computable
-In particular, if a language can be decided by a k-tape Turing machine, then the language is decidable

Example: Since we constructed a 2-tape TM that decides $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}: \mathrm{n}=0,1,2, \ldots\right\}$, then L is Turing-computable.

IMPLICATIONS (2)

Example: Show that if L1 and L2 are decidable then
L1 \cup L2 is also decidable

Proof. ...

Homework

1. Prove that $(\mathrm{ab})^{*}$ is Turing-enumerable (Hint: use a 2-tape Turing machine.)
2. Exercise 4.24 a) and b) (Hint: use a 3-tape Turing machine.)
3. For proving that Σ^{*} is Turing-enumerable, we needed to construct a Turing machine that computes the successor of a word. Here are some examples of what the machine will produce ($\mathrm{w} \rightarrow \mathrm{w}$ ' indicates that when the machine receives w as input, it produces w' as output)

$$
\mathrm{a} \rightarrow \mathrm{~b} \rightarrow \mathrm{aa} \rightarrow \mathrm{ab} \rightarrow \mathrm{ba} \rightarrow \mathrm{bb} \rightarrow \mathrm{aaa}
$$

