MULTI-TAPE TURING MACHINES: INFORMAL DESCRIPTION

MULTI-TAPE TURING MACHINES: INFORMAL DESCRIPTION (II)

•Each tape is bounded to the left by a cell containing the symbol Δ

•Each tape has a unique header

•Transitions have the form (for a 2-tape Turing machine):

 $((p,(x_1, x_2)), (q, (y_1, y_2))))$

Such that each x_i is in Σ and each y_i is in Σ or is \rightarrow or \leftarrow and if $x_i = \Delta$ then $y_i = \rightarrow$ or $y_i = \Delta$

MULTI-TAPE TURING MACHINES

Construct a 2-tape Turing machine that recognizes the language:

$$L = \{a^{n}b^{n} : n = 0, 1, 2, ...\}$$

Input:

Таре1: <u>А</u>w Tape2: <u>А</u>

Hints:

•use the second tape as an stack•Use the machines M1 and M0

Output:

Tape1: $\Delta 1...$ if $w \in L$ or Tape1: $\Delta 0...$ if $w \notin L$

MULTI-TAPE TURING MACHINES VS TURING MACHINES

We can simulate a 2-tape Turing machine M2 in a Turing machine M:

• we can represent the contents of the 2 tapes in the single tape by using special symbols

•We can simulate one transition from the M2 by constructing multiple transitions on M

•We introduce several (finite) new states into M

USING STATES TO "REMEMBER" INFORMATION

Configuration in a 2-tape Turing Machine M2:

State in the Turing machine M: "s+b+1+a+2"

Which represents:

- •M2 is in state s/
- •Cell pointed by first header in M2 contains b
- •Cell pointed by second header in M2 contains an a

Yes, we need large number of states for M but it is finite!

Configuration in a 2-tape Turing Machine M2:

SIMULATING M2 WITH M

•The alphabet Σ of the Turing machine M extends the alphabet Σ_2 from the M₂ by adding the separator symbols: Δ_1 , Δ_2 , Δ_3 , Δ_4 and Δ_e , and adding the mark symbols: $\sqrt{}$ and \times

•We introduce more states for M, one for each 5-tuple $p+\alpha+1+\beta+2$ where p in an state in M_2 and $\alpha+1+\beta+2$ indicates that the head of the first tape points to α and the second one to β

•We also need states of the form $p+\leftarrow+1+\rightarrow+2$ for control purposes

State in M: s+b+1+a+2

•At the beginning of each iteration of M2, the head starts at Δ_e and both M and M2 are in an state s •We traverse the whole tape do determine the state $p+\alpha+1+\beta+2$,

Thus, the transition in M2 that is applicable must have the form:

((p,(α , β)), (q,(γ , ψ))) in M₂

 $p+\alpha+1+\beta+2 \longrightarrow q+\gamma+1+\psi+2 \text{ in } M$

SIMULATING TRANSITIONS IN M2 WITH M (2)

•To apply the transformation $(q,(\gamma,\psi))$, we go forwards from the first cell.

•If the γ (or ψ) is \rightarrow (or \leftarrow) we move the marker to the right (left):

•If the γ (or ψ) is a character, we first determine the correct position and then overwrite

MULTI-TAPE TURING MACHINES VS TURING MACHINES (6)

•We conclude that 2-tape Turing machines can be simulated by Turing machines. Thus, they don't add computational power!

•Using a similar construction we can show that 3-tape Turing machines can be simulated by 2-tape Turing machines (and thus, by Turing machines).

•Thus, k-tape Turing machines can be simulated by Turing machines

IMPLICATIONS

•If we show that a function can be computed by a k-tape Turing machine, then the function is Turing-computable

•In particular, if a language can be decided by a k-tape Turing machine, then the language is decidable

Example: Since we constructed a 2-tape TM that decides $L = \{a^nb^n : n = 0, 1, 2, ...\}$, then L is Turing-computable.

IMPLICATIONS (2)

Example: Show that if L1 and L2 are decidable then $L1 \cup L2$ is also decidable

Proof. ...

HOMEWORK

- 1. Prove that (ab)* is Turing-enumerable (**Hint**: use a 2-tape Turing machine.)
- 2. Exercise 4.24 a) and b) (Hint: use a 3-tape Turing machine.)
- 3. For proving that Σ* is Turing-enumerable, we needed to construct a Turing machine that computes the successor of a word. Here are some examples of what the machine will produce (w → w' indicates that when the machine receives w as input, it produces w' as output) a → b → aa → ab → ba → bb → aaa